

- Interpolate whole images:

$$
\mathbf{I}_{\text {halfway }}=\alpha^{*} \mathbf{I}_{1}+(1-\alpha)^{*} I_{2}
$$

- This is called cross-dissolving in film industry
- But what if the images are not aligned?

Failures: Averaging Images

- Global alignment doesn't work.

Averaging vectors

- $\mathbf{v}=\mathbf{p}+\alpha(\mathbf{q}-\mathbf{p})$

$$
=(1-\alpha) \mathbf{p}+\alpha \mathbf{q} \quad \text { where } \quad \alpha=\|\mathbf{q}-\mathbf{v}\|
$$

- p and q can be anything:
- points on a plane (2D) or in space (3D)
- Colors in RGB or HSV (3D)
- Whole images ... etc.

Idea \#2: Align, then cross-disolve

- Align first, then cross-dissolve
- Alignment using global warp - picture still valid

Dog Averaging

- What to do?
- Cross-dissolve doesn't work
- Global alignment doesn't work
- Cannot be done with a global transformation (e.g. affine)
- Any ideas?
- Feature matching!
- Nose to nose, tail to tail, etc.
- This is a local (non-parametric) warp

Idea \#3: Local warp \& cross-dissolve

Morphing procedure:

1. Find the average shape (the "mean dog"())

- local warping

2. Find the average color

- Cross-dissolve the warped images

- Interpolate feature locations $\mathbf{p}_{\mathrm{i}}^{\mathrm{t}}=(1-\alpha(\mathrm{t})) \mathbf{p}_{\mathrm{i}}^{0}+\alpha(\mathrm{t}) \mathbf{p}^{1}{ }_{\mathrm{i}}$
- Perform two warps: one for I_{0}, one for I_{1}
- Deduce a dense warp field from a few pairs of features
- Warp the pixels
- Linearly interpolate the two warped images

Morphing Sequence

- Input: two images I_{0} and I_{N}

- Output: image seq. \mathbf{I}_{i}, with $i=1 . . \mathrm{N}-1$

- User specifies sparse correspondences on the images - Pairs of vectors $\left\{\left(\mathbf{p}_{\mathrm{j}}{ }^{0}, \mathbf{p}_{\mathrm{j}}^{\mathrm{N}}\right)\right\}$

Careful: warp vs. inverse warp

How do you perform a given warp:

- Forward warp
- Potential gap problems
- Inverse lookup the most useful
- For each output pixel
- Lookup color at inversewarped location in input

Image Warping - non-parametric

- Move control points to specify a spline warp
- Spline produces a smooth vector field

Slide Alyosha Efros

Warp specification - sparse

How can we specify the warp?
Specify corresponding points

- interpolate to a complete warping function
- How do we do it?

How do we go from feature points to pixels?
Slide Alyosha Efros

Warp specification - dense

- How can we specify the warp? Specify corresponding spline control points
- interpolate to a complete warping function

But we want to specify only a few points, not a grid
Slide Alyosha Efros

Triangular Mesh

1. Input correspondences at key feature points
2. Define a triangular mesh over the points (ex. Delaunay Triangulation)

- Same mesh in both images!
- Now we have triangle-to-triangle correspondences

3. Warp each triangle separately

- How do we warp a triangle?
- 3 points $=$ affine transformation!
- Just like texture mapping

Slide Alyosha Efros

HINT: warping triangles

Don't forget to move the origin too!

Problems with triangulation morphing

- Not very continuous - only C^{0}

Fig. L. Darsa

- Folding problems - relationship between feature locations may not be the same between two objects.

Linear Interpolation

- How do we create an intermediate warp at time t?
- Assume $\alpha(t)=[0,1]$
- Simple linear interpolation of each feature pair
- (1- $\alpha(t)) \mathbf{p}_{0}+\alpha(t) \mathbf{p}_{1}$ for corresponding features \mathbf{p}_{0} and \mathbf{p}_{1}

Warp as interpolation

- We are looking for a warping field
- A function that given a 2D point, returns a warped 2D point
- We have a sparse number of correspondences
- These specify values of the warping field
- This is an interpolation problem
- Given sparse data, find smooth function

Applying a warp: USE INVERSE

- Forward warp:
- For each pixel in input image
- Paste color to warped location in output
- Problem: gaps
- Inverse warp
- For each pixel in output image
- Lookup color from inversewarped location

Input images

Feature correspondences

- The feature locations will be our y_{i}

Warp each image to intermediate location

Two different warps: Same target location, different source location
i.e. the x_{i} are the same (intermediate locations), the y_{i} are different (source feature locations)
Note: the y_{i} do not change along the animation, but the x_{i} are different for each intermediate image

Here we show $\alpha=0.5$
(the y_{i} are in the middle)

Interpolate feature location

- Provides the x_{i}

Warp each image to intermediate location

Bells and whistles

Morphing \& matting

- Extract foreground first to avoid artifacts in the background

Figure 5. Nonuniform metamorphosis
http://www-cs.ccny.cuny.edu/~wolberg/pub/cgi96.pdf

Uniform morphing

Dynamic Scene

Lots of manual work
-Automatic:

- facial features detection and localization
- face tracking

3D Morphing

- Feature-Based Volume Metamorphosis Lerios, Garfinkle, and Levoy.
- http://www-graphics.stanford.edu/~tolis/toli/research/morph.html

The Morphable Face Model

- Again, assuming that we have m such vector pairs in full correspondence, we can form new shapes $\mathbf{S}_{\text {model }}$ and new appearances $\mathbf{T}_{\text {model }}$ as:

$$
\begin{aligned}
& \mathbf{S}_{\text {model }}=\sum_{i=1}^{m} a_{i} \mathbf{S}_{i} \quad \mathbf{T}_{\text {model }}=\sum_{i=1}^{m} b_{i} \mathbf{T}_{i}
\end{aligned}
$$

- If number of basis faces \boldsymbol{m} is large enough to span the face subspace then:
- Any new face can be represented as a pair of vectors $\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{m}\right)^{\top}$ and $\left(\beta_{1}, \beta_{2}, \ldots, \beta_{m}\right)^{\top}$!

The Morphable Face Mode

The actual structure of a face is captured in:

- the shape vector $\mathbf{S}=\left(x_{1}, y_{1}, x_{2}, \ldots, y_{n}\right)^{T}$,
containing the (x, y) coordinates of the n vertices of a face, and
- the appearance (texture) vector $\mathbf{T}=\left(R_{1}, G_{1}, B_{1}, R_{2}, \ldots, G_{n}, B_{n}\right)^{T}$, containing the color values of the mean-warped face image.

Shape S

Appearance T

Subpopulation Means

- Examples: -Happy faces -Young faces \square Asian faces \square Etc.
-Sunny days
-Rainy days
\square Etc.
\square Etc.

